
1

Nonlinear Controller implementation in a
Low-Cost, PC-Based Platform for Induction Motor

Drive Research
Technical Themes: I and K

Abstract— This paper describes the implementation of nonlinear con-
trollers for an induction motor based on exact linearization using a low-
cost PC-based platform. The controller algorithm runs in real time in a
standard PC fitted with a commercial data-acquisition board and a custom
FPGA-based board. The FPGA is used to interface with a PWM inverter
and with an incremental encoder fitted in the motor shaft. The controller
has been implemented using Real-time Linux as the real-time operating sys-
tem. The same PC also supports all the control-development tools including
compilers, a dynamical-system simulator and a numerical-algorithm pack-
age for control design.

The paper shows experimental results with a 0.25 kW induction motor.

I. INTRODUCTION

Nowadays, Digital Signal Processors (DSP) or micro-
controllers are frequently used to implement control algorithms
for induction motor drives.

On one hand, the most sophisticated DSP’s [1] are preferred
by the electrical-drive community to implement controllers in
research test rigs because they have fast and efficient floating-
point-arithmetic units. This characteristics makes it possible to
write the algorithms in a high-level language with an almost
straightforward implementation. However, these DSP’s do not
have integrated peripherals such as PWM generators or analog-
to-digital converters and, therefore, sophisticated hardware has
to be added to the device. In addition, their development systems
(hardware and software) require a PC where the DSP board and
the peripherals are installed.

On the other hand, microcontrollers (and some special fixed-
point DSP’s) very often have integrated all the necessary periph-
erals for electric motor control providing a compact and cheap
solution for industrial applications. However, these devices do
not have a floating-point-arithmetic unit and the algorithms have
to be written using fixed-point arithmetic. Programming and de-
bugging can still be done in a high-level language but an addi-
tional PC is also necessary for that purpose.

In this paper, an alternative approach is presented to imple-
ment a research test rig where to test complicated nonlinear con-
trollers for induction motors: the same PC is used for controller
development, programming and debugging (possibly using sim-
ulation) and for controller real-time implementation. Given
the fact that today’s microprocessors used in PC’s (Pentium or
Athlon) are very powerful, this was the platform chosen to in-
vestigate the implementation of complex nonlinear controllers
based on exact linearization for an induction motor drive where
high sampling frequency was required. The controllers required
state-variable and parameter identification [2].

The alternative proposed here required to fit the PC with some
external peripherals. A typical data-acquisition board was used
for current feedback while a custom FPGA-based board was

ωRr

ψr
Rd r

irSd
irSq

irSd r

estimator

�
ψs

R
estimator

RRψ̂r
Rd

α̂

Dec

Dec

us
Sd

us
Sq

ωRiR iS

dqs �
dqr

isSd

R̂R

rst
�
dqs

ur
Sdvr

Sd

PI

PI

vr
SqirSqr

ur
Sq

isSq

A.T.C.
∆α̂

α̂

Current controlled VSI

dqr �
rstNonlinear

Controller

Fig. 1. Controller implementation block diagram.

used for the final stage (timing) of vector PWM implementation
and speed feedback using an incremental encoder. Everything
together made a cost effective, reliable and easy to maintain re-
search platform.

The paper is structured as follows. A brief explanation of the
controller implemented in the test rig is given in section II. The
test rig used is presented in section III. The discussion includes
the custom hardware designed to interface with the inverter and
the incremental encoder, and the real-time implementation of
the control algorithm. Finally, the experimental results obtained
are presented in Section IV. The main conclusions of the paper
are summarised in Section V.

II. CONTROLLER IMPLEMENTATION

A Lyapunov based nonlinear controller and a conventional
direct vector controller were implemented in a research test rig.
The controllers are described in [2] where it is shown that both
controllers are some form of exact linearization using feedback.
Only a brief description will be done in this paper to illustrate
the computational complexity of the implemented controllers.

A block diagram of the controller is shown in Figure 1. The
controller measures the rotor speed and two motor currents with
hall-effect sensors. The stator-current components in stator co-
ordinates are calculated in the block “rst/dqs” using Park’s trans-
formation (see [3]) from the two phase currents. Stator-current
components and stator-voltage components1 are used for rotor-
resistance and rotor-flux estimation. The rotor-flux estimator is
an open-loop reduced order one with the following discrete-time
implementation:

1Stator-voltage is not measured but taken directly from the current-controller
output.



2

�
ˆ�ψs
R �

k � e �aTs

�
ˆ�ψs
R �

k � 1 �
�
b�
a � e �aTs � 1�

aTs

�
1 � e �aTs �
	�� �ıs

S 
 k � 1

� �b�
a � 1 � 1�

aTs

�
1 � e �aTs ��	 � �ıs

S 
 k (1)

Where:

e �aTs � eETs � cos � ωRTs 
 � j sin � ωRTs 
�
 (2)�
a � E � jωR (3)�
b � D (4)

In these equations, E and D are functions of the motor parame-
ters, ωR is the rotor speed and Ts is the sampling period.

Given the open-loop nature of the rotor-flux estimator, it is
necessary to estimate the rotor resistance of the machine to avoid
flux-estimation errors. The estimator presented in [4] has been
used. This estimator is based in a lineal regression model of the
motor:

�y� ��� ��
v1 � jωR � �v1dt � RR

�u� ��� �
� � 1

LR
� �v2dt 	 (5)

where: �
v1 � �us

S � RS
�
ıs
S � σLS

d
dt

�
ıs
S (6)�

v2 � �us
S � RS

�
ıs
S � LS

d
dt

�
ıs
S (7)

The value of RR can be computed as the quotient between
�
u

and
�
y. The derivatives and integrals of equations (6) and (7) are

computed using a fourth-order, band-pass Bessel filter. The val-
ues of

�
u and

�
y are averaged using a recursive total-least-squares

algorithm to avoid the effects of noise. It is worth to mention
that this algorithm cannot be used when the machine is under
fast speed transients. Therefore, the rotor-resistance estimation
is only computed while the motor is at steady state.

The rotor-flux estimator gives the magnitude (ψ̂r
Rd) and angle

(α̂) of the rotor-flux vector. The former is used for flux closed-
loop control while the latter is used to calculate the d-q stator-
current components in field coordinates (block “dqs � dqr” in Fig-
ure 1).2 These currents are used in the microprocessor to control
the inverter with third order linear PI controllers. To avoid using
a high-gain, high-speed current controllers, these controllers are
designed taking into account the stator dynamics, which gives
better results when low sampling frequencies are used [2]. Un-
fortunately this approach shows coupling between the d and q
current components. Decoupling is achieved in “Dec” block of
Figure 1, implementing a variable change given by:

ur
Sd � vr

Sd � ωSirSq � Bψr
Rd

F
(8)

ur
Sq � vr

Sq � ωSirSd � CωRψr
Rd

F
(9)

2This is really the calculation of the current components in a reference frame
rotated an angle α̂ with respect to the stator reference frame.

Rotor-flux controller
Vec. irSd r � KIψ ��� ψr

Rdr � ψr
Rd � dt � KPψ � ψr

Rdr � ψr
Rd �

L-I irSd r � 1
D � k1I1 ��� ψr

Rd r � ψr
Rd � dt � � k1 � I1 !"� ψr

Rdr � ψr
Rd � � Eψr

Rd #
Rotor-speed controller

Vec. irSqr � 1
Gψr

Rd
� KIω � � ωRr � ωR ! dt � KPω � ωRr � ωR !$!

L-I irSqr � 2J
PGψr

Rd % k2I2 � � ωRr � ωR ! dt �&� k2 � I2 ! � ωRr � ωR !('
TABLE I

Lyapunov-Integral (L-I) and Direct Vector (Vec) Controllers equations.

where vr
Sd and vr

Sq are the outputs of the decoupled current con-
trollers, ur

Sd and ur
Sq are the stator-voltage vector components in

rotor-flux coordinates, B, C and F are functions of the motor
parameters and ωS is the rotor-flux-frame speed, which is com-
puted as:

ωS � ωR � DirSq

ψr
Rd

(10)

The decoupled stator-voltage vector is fed into the block
“dqr � rst” where it is transformed from rotor-flux coordinates to
stator coordinates before computing the switching times for the
inverter. The angle used for the transformation is α̂ � ωS

Ts
2 . The

latter is calculated in block “A.T.C” (Axis Turn Compensation)
to compensate the rotation of the rotor-flux-oriented frame dur-
ing the sampling period (see [5]). This compensation is vital at
high rotor speed.

The flux magnitude and the rotor speed are also fed into the
“Nonlinear Controller” block, which implements the rotor flux
and rotor speed controllers. The outputs of these controllers
are the reference currents which are fed into the PI current
controllers. A nonlinear, Lyapunov-based controller has been
tested, comparing his performance against a conventional di-
rect vector controller. The equations used in each controller are
shown in table I.3

III. TEST-RIG SETUP

A block diagram of the test rig developed is shown in Fig-
ure 2. The test rig has a 250 W induction machine with an
incremental encoder for speed measurement. A d.c. machine
has been used to load the induction motor. The field winding
of this machine is fed by a d.c. voltage source and the arma-
ture winding is connected to a variable resistor. With this setup
the load torque is always proportional to the rotational speed
of the machine. The control system has been implemented in
a PC compatible based in a 200 MHz Pentium processor. This
PC has been fitted with a data-acquisition board from Keithley
Metrabyte (DAS-1400) which is used to measure the currents
thorough two Hall-effect current sensors. A FPGA-based card
has been designed to trigger the inverter legs and to measure the
encoder pulses. The real-time control software has been imple-
mented using the RT-Linux operating system [6]. The controller
sampling frequency has been chosen equal to 2 kHz.

3In the full paper, these equations will be explained in more detail.



3

INV380 V

Encoder

120 V DC Machine

Induction
Machine

PWM+Encoder
Interface

ISA Bus

A/D Card

RT-Linux

iR
iS

Fig. 2. Test Rig block diagram.

A. Inverter control

The inverter is controlled by space-vector modulation [7],
which makes it possible to place the voltage vector in any posi-
tion of the d-q plane. However, to make this placement accurate,
it is necessary to control the switching time of the three inverter
legs. It is not feasible, given the typical latency of microproces-
sors of various microseconds, to rely in an interrupt routine to
look after the inverter switching. In consequence, it is necessary
to use dedicated hardware to control the switching times of the
inverter legs. This hardware can be:

� Integrated in the microprocessor die.
� Built using discrete LSI timers.
� Configured in a Programmable Logic Device.
The first option is frequently found in modern 16 bits fixed point
microcontrollers and DSP’s.4 Unfortunately, the development
platforms of these microprocessors can be very expensive and
flexible floating-point computations becomes complicated. In
addition, the fact that the user base of these tools is not very large
makes these systems bug-prone. This work has investigated the
application of a general purpose Pentium microprocessor, which
is powerful enough to cope with the control+estimator algorithm
in floating-point arithmetic and have economy-scale prices in
both, the microprocessor and the development tools. With this
approach, it has been necessary to use specific hardware to gen-
erate the PWM signals. Using programmable logic has provided
more flexibility than discrete components.

A.1 PWM generator block diagram

A block diagram of the PWM generator circuit is shown in
Figure 3. The circuit has a 16 bit counter and 4 comparators
associated to 4 registers of 16 bits. These registers store the

4Examples of these microprocessors are the C166 from Infineon Technologies
[8] or the TMS320F240 from Texas Instruments [9].

Comparator

Comparator

ComparatorRegister Register

Address
Decoder

RegisterRegister

Register Register

Register

Register

Register Prescaler

Counter

Interr

Register

16

16

16

16 16

16

16

16

tu

tv

tw

tu’

tv’

tw’

A[3:0]

SEL[3:2]

E

E

E

E

E

E

E

8

D[10:8]

ts’

Prescaler

ts

Enable Reset Counter

16

SW1

SW3

SW5

D[7:0]D[15:0]

Control Register

A

B
Comparator =

A

B
=

A

B
=

A

B
=

T Q

T Q

T Q

Q

D Q

D Q

D Q

D QD Q

D Q

D Q

E

E

E

D Q

D Q

INT

D Q

Fig. 3. PWM generator block diagram.

sampling period ts and the switching times of each inverter leg:
tu, tv and tw. When the counter is equal to any of these times, the
pulse generated at the output of the comparator toggles the in-
verter driver output. When the counter reaches the value stored
in the ts register, an interrupt is generated which acts as a time-
base for the controller program. This signal is also used to trans-
fer the values stored by the microprocessor in the registers t

�

s, t
�

u,
t

�

v and t
�

w to the ts, tu, tv and tw. This double buffer technique
allows the processor to write the switching times at any time
during the previous switching period. However, this results in
a delay of one sampling period in the application of the desired
voltage vector. This delay has to be compensated in the discrete
time implementation of the controllers.

B. Incremental-encoder interface

With the exception of the sensorless control algorithms, the
rotor position or speed has to be measured. Also in the sensor-
less drives, the rotor speed and position has to be measured in
the test rig to check the controller performance. Today the most
common device used to speed and position measurement is an
incremental encoder. The necessary circuitry to interface with
the encoder has been implemented in the same FPGA used for
PWM generation. A block diagram of the encoder interface cir-
cuit is shown in figure 4. The circuit has two inputs that will
be connected to the two channels of the encoder. These signals
are filtered to eliminate noise spikes that could be taken as en-
coder pulses. The filtered signals are feed into the “Rotation
Direction” block to get the rotation direction of the encoder axis
and to the “x 4” block, where a pulse is generated at the output
for each edge of the inputs, multiplying by four the number of
pulses counted in the 16 bit counter block. The outputs of the
circuit are the pulse count and the rotation direction, which can
be read by the microprocessor to compute the rotor speed and
angular position.

C. Real-time implementation of the control algorithm

The program to implement the control algorithm must be ex-
ecuted each sampling period, independently of the computer



4

Cntx 4
Digital FilterCh B

Ch A Digital Filter

Rotation
Direction

16

N Pulses

L/R

16

Fig. 4. Encoder interface block diagram.

load. Therefore, it is necessary to use real-time-programming
techniques to implement this control program. There are two
alternatives:

� Custom programming. If the program is implemented in an
embedded system using a microcontroller or a DSP, it is possi-
ble to implement it directly using real-time programming tech-
niques [10]. In this case the common approach consist in an
endless loop in which the computer waits the beginning of the
sampling period and then measures the inputs and computes the
outputs based on the control algorithm.

� Real-Time operating system. If, in addition to the control al-
gorithm, it is necessary to implement other tasks in the control
microprocessor, like data-logging or an user-interface, the cus-
tom programming approach can be very difficult. In this case
using an operating system facilitates the implementation of the
controller. However, time-sharing operating systems like Linux
or Windows-NT are designed to offer the best performance on
average, but not to guarantee a maximum response time.5 This
fact makes it necessary to use a Real-Time Operating System
(RTOS) when the sampling time is less than 1 s. RTOS such as
QNX or VxWorks are feature rich and have a low memory foot-
print but they are very expensive. In this application an open-
source RTOS (RT-Linux) has been chosen instead. This RTOS
is based in a simple real-time scheduler under which the Linux
O.S. run as the lower priority task. With this approach only the
time-critical task (the non-linear controller in this application)
run in Real-Time space. The rest of the controller tasks like the
user interface and data-logging are Linux applications that run
in user space, isolated from the real-time tasks. The communi-
cation between real-time task and user space tasks is done over
FIFO devices and shared memory.

IV. EXPERIMENTAL RESULTS

Figure 5 shows the results obtained with the controller de-
scribed in section II implemented in the test rig described in
section III. The data are taken from the controller task and sent
to the supervision task using a RT-FIFO. The supervision task
stores the data into a disk file to further analysis with computer
packages like Matlab or Octave. In this case the figure has been
plotted using Octave and GnuPlot.

V. CONCLUSIONS

This paper explains the implementation of some nonlinear-
control algorithms for induction motor drives in a research test

5For example, in a Pentium 200 microprocessor running Linux, the average
interrupt response time is 2µs. However the maximum response time is not
limited, and it can be hundred of milliseconds when the machine is heavy loaded
[11].

ωR

2520151050

300
150

0
-150
-300

ωR

2520151050

300
150

0
-150
-300

�
ψR

�
estimado

2520151050

1.2

0.8

0.4

0

�
ψR

�
estimado

2520151050

1.2

0.8

0.4

0

Fig. 5. Results of a Lyapunov controller in rotor-flux coordinates. Sampling
freq. 2kHz. X axis in seconds. Y axis in Wb (top) and radel � s (bottom).

rig using standard PC hardware instead of DSP’s or microcon-
trollers. It has been shown that with the addition of the acquisi-
tion and modulation hardware and the installation of a real-time
operating system, a robust and easy to use platform is obtained.

While it is easy to get a data acquisition card to measure cur-
rent and voltages and an interface card with an incremental en-
coder in the market, it is difficult to get a tree-phase modulation
card. This has motivated the design of a custom card, based in a
FPGA, to perform the timing required to control the switching
times of the inverter legs.

The controller, state-variable estimators and parameter esti-
mators have been implemented in a standard PC using the Real-
Time Operating System RT-Linux. The interface with the in-
verter and the incremental encoder has been implemented in a
custom board based on a FPGA. This approach has resulted in a
very flexible and low-cost environment.

Experimental results have been shown to illustrate the feasi-
bility and performance of this approach.

REFERENCES

[1] Texas Instruments Inc., TMS320C6000 CPU and Instruction Set Reference
Guide, October 2000.

[2] José Daniel Muñoz Frı́as and Aurelio Garcı́a Cerrada, “A compara-
tive study between two nonlinear control techniques for induction motor
drives,” in IECON02, Sevilla, 2002.

[3] Paul C. Krause, Analysis of Electric Machinery, McGraw-Hill Inc., New
York, 1986.

[4] A. Garcı́a-Cerrada and J.L. Zamora, “On-line rotor-resistance estimation
for induction motors,” in Proc. of the European Power Electronics Conf.
(EPE’97). EPE, September, Trondhein 1997, vol. 1, pp. 542–547.

[5] Aurelio Garcı́a Cerrada, Observer-based field-oriented controller for an
inverter-fed traction induction motor drive, Ph.D. thesis, University of
Birmingham (U.K.), July 1991.

[6] Michael Barabanov, “A linux-based real-time operating system,” M.S.
thesis, New Mexico Institute of Mining and Technology, Socorro, New
Mexico, June 1997.

[7] Joachim Holtz, “Pulsewidth modulation for electronic power conversion,”
Proceedings of the IEEE, vol. 82, no. 8, pp. 1194–1214, August 1994.

[8] Infineon Technologies, C166 Family of High-Performance CMOS 16-bit
Microcontrollers, Infineon Technologies AG, München, 1999-08 edition,
1999.

[9] Texas Instruments, TMS320C240, TMS320F240 DSP controllers data
sheet, Texas Instruments, Houston, Texas, 1998.

[10] David M. Auslander, John R. Ridgely, and Jason C. Jones, “Real-time
software for implementation of feedback control,” in The Control Hand-
book. CRC Press and IEEE Press, 1996.

[11] Michael Barabanov and Victor Yodaiken, “Introducing real-time linux,”
Linux Journal, , no. 34, February 1997.


